

Exploring unrecognized symptoms and the underlying neuronal processes

Michael J. Thorpy, MD

Director, Sleep-Wake **Disorders Center**

Montefiore Medical Center

Richard K. Bogan, MD

Owner, Bogan Sleep Consultants, LLC

We Need to Think Differently About Narcolepsy

According to respondents of the Know Narcolepsy® Survey:

- of those with narcolepsy have changed their lives because of the disorder
- of those with narcolepsy were misdiagnosed before receiving a diagnosis
- of HCPs agreed there needs to be more public education about narcolepsy

The Know Narcolepsy Survey is a three-party survey of 1,654 US adults including those with narcolepsy (n=200), the general public (n=1,203), and physicians (n=251) currently in clinical practice who have treated patients with narcolepsy in the last two years. The survey was conducted online in March, April and August 2018, respectively, by Versta Research on behalf of Harmony Biosciences, LLC. The Narcolepsy Network collaborated on the patient survey.

Data on file. Harmony Biosciences. 2018.

Overview

- The symptoms of narcolepsy
- Wake-promoting neuronal systems in the brain
- Hypocretin and sleep-wake state stability
- The role of histamine in promoting and stabilizing wakefulness

Disclosures

- Harmony Biosciences is the sponsor of this program, and the content of this program was developed by Harmony Biosciences in collaboration with the presenters
- This is not a continuing medical education (CME) event; therefore, no CME credit will be provided
- Today's faculty are paid speakers for Harmony Biosciences

The Symptoms of Narcolepsy

Question for the Audience

Which of the symptoms below reflect narcolepsy-specific sleep-wake state instability (select all that apply)?

- 1. Excessive daytime sleepiness (EDS)
- 2. Sleep disordered breathing
- 3. Cataplexy
- 4. Sleep paralysis
- 5. Hypnagogic hallucinations
- 6. Mood changes (e.g., anxiety, depression)
- 7. Disrupted nighttime sleep

Question for the Audience

On a scale of 1 to 5, how important is the role of histamine in promoting and stabilizing wakefulness?

- 1. Not at all important
- 2. A little important
- 3. Somewhat important
- 4. Very important
- 5. Extremely important

Narcolepsy Is Characterized by Sleep-Wake State Instability

- People living with narcolepsy experience sleep-wake state instability^{1,2}
 - Frequent transitions between sleep-wake states^{2,3}
 - Unstable boundaries between sleep-wake states^{3,4}

^{1.} España RA, Scammell TE. Sleep. 2011;34(7):845-858. 2. Ahmed I. Thorpy M. Clin Chest Med. 2010;31(2):371-381. 3. van der Heide A, Lammers GJ. In: Thorpy MJ, Billiard M, eds. Sleepiness: Causes, Consequences and Treatment. Cambridge, UK: Cambridge University Press; 2011:111-125. 4. Broughton R et al. Sleep. 1986;9(1 Pt 2):205-215.

Narcolepsy Is Characterized by Sleep-Wake State Instability

Non-REM sleep may intrude into wakefulness as unintended lapses into sleep^{1,2}

^{1.} Rogers AE et al. Sleep. 1994;17(7):590-597. 2. Saper CB et al. Nature. 2005;437(7063):1257-1263.

Narcolepsy Is Characterized by Sleep-Wake State Instability

- Elements of REM sleep may intrude into wakefulness, manifesting symptoms of REM sleep dysregulation (e.g., cataplexy)^{1,2}
- Although rare, a transition to full REM sleep is possible following a cataplexy attack³

^{1.} Scammell TE. N Engl J Med. 2015;373(27):2654-2662. 2. van der Heide A, Lammers GJ. In: Thorpy MJ, Billiard M, eds.

Sleepiness: Causes, Consequences and Treatment. Cambridge, UK: Cambridge University Press; 2011:111-125. 3. Dauvilliers Y et al. Nat Rev Neurol. 2014;10(7):386-395.

Sleep-Wake State Instability Occurs Across 24 Hours

Adapted with permission from Plazzi G et al. Sleep Med Rev. 2008;12(2):109-128 and Rogers AE et al. Sleep. 1994;17(7):590-597.

^{1.} Rogers AE et al. Sleep. 1994;17(7):590-597. 2. Pizza F et al. Sleep. 2015;38(8):1277-1284. 3. Waihrich ES et al. Arq Neuropsiquiatr. 2006;64(4):958-962. 4. American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. 2014. 5. Plazzi G et al. Sleep Med Rev. 2008;12(2):109-128. 6. Pizza F et al. Sleep. 2015;38(8):1277-1284. 7. Roth T et al. Sleep Med. 2013;9(9):955-965.

Question for the Audience

In your experience, how long does it take, on average, to receive a narcolepsy diagnosis after symptom onset?

- 1. 1-3 years
- 2. 3-5 years
- 3. 6-10 years
- 4. More than 10 years

Excessive Daytime Sleepiness May Not Always Be Obvious

Obvious Manifestations Less-Obvious Manifestations

Lapses Into Drowsiness or Sleep¹⁻³

Inability to Stay Awake and Alert Throughout the Day²

Impaired Alertness and Neurocognitive Functioning^{1,2,6}

Unplanned naps^{4,5}

Microsleep episodes^{4,6} Automatic behavior^{1,6}

concentrating⁶

Lapses of attention¹

^{1.} Thorpy M, Morse AM. Sleep Med Clin. 2017;12(1):61-71. 2. American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. 2014. 3. Kretzschmar U et al. J Sleep Res. 2016;25(3):307-313.

^{4.} Nishino S. Sleep Med. 2007;8(4):373-399. 5. Thorpy M, Dauvilliers Y. Sleep Med. 2015;16(1):9-18. 6. Ahmed I, Thorpy M. Clin Chest Med. 2010;31(2):371-381.

Question for the Audience

When evaluating patients for narcolepsy, how often do you ask about the presence of dreams during daytime naps?

- 1. Always
- 2. Sometimes
- 3. Rarely
- 4. Never

REM Sleep Dysregulation May Manifest in Different Ways

- REM sleep dysregulation may manifest as:
 - Cataplexy^{1,2}
 - SOREMPs³
 - Hypnagogic/hypnopompic hallucinations³
 - Sleep paralysis³
 - Vivid dreams⁴
 - REM sleep behavior disorder³
 - Dreams during daytime naps⁵
 - Frightening/bizarre dreams^{4,6}

SOREMP, sleep onset REM period.

^{1,} Scammell TE, N Engl J Med, 2015;373(27);2654-2662, 2, American Academy of Sleep Medicine, International Classification of Sleep Disorders, 3rd ed, 2014.

^{3.} Bassetti C, Aldrich MS. In: Culebras A, ed. Sleep Disorders and Neurological Disease. Marcel Dekker Inc; 2000:323-354. 4. Plazzi G et al. Sleep Med Rev. 2008;12(2):109-128.

^{5.} Waihrich ES et al. Arq Neuropsiquiatr. 2006;64(4):958-962. 6. Thorpy M, Dauvilliers Y. Sleep Med. 2015;16(1):9-18.

Cataplexy Can Be Difficult to Recognize

Obvious Manifestations Less-Obvious Manifestations

Affecting Most Muscle Groups^{1,2}

Knees buckling or collapse to the ground^{1,3,4}

Most people with cataplexy do not experience rapid collapse to the ground.^{1,2}

Head/Neck Commonly Affected^{3,4}

Abnormal Muscle Sensations^{1,4}

Not all people living with narcolepsy experience cataplexy.³

^{1.} Thorpy M, Morse AM. Sleep Med Clin. 2017;12(1):61-71. 2. Overeem S et al. Sleep Med. 2011;12(1):12-18. 3. American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. 2014.

^{4.} Ahmed I, Thorpy M. Clin Chest Med. 2010;31(2):371-381

Cataplexy Can Be Triggered by a Range of Emotions and Situations

Emotions

- Happiness¹
- Laughter/humor^{2,3}
- Anger²
- Excitement⁴
- Stress or anxiety²
- Tension⁴
- Anticipation²
- Embarrassment⁴

Situations

- Telling or hearing a joke, making a witty remark²
- Being the center of attention²
- Unexpectedly encountering a friend or acquaintance²
- Being surprised/startled²
- Remembering happy events or being emotionally moved⁴
- Sex or romantic moments⁴

^{1.} Thorpy M et al. Sleep Med Clin. 2017;12(1):61-71. 2. Overeem S et al. Sleep Med. 2011;12(1):12-18.

^{3.} American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. 2014. 4. Anic-Labat S et al. Sleep. 1999;22(1):77-87.

Question for the Audience

Rate the extent to which you agree with the following statement:

People with narcolepsy with cataplexy may suppress emotions or avoid social situations to prevent triggering their cataplexy.

- 1. Strongly agree
- 2. Somewhat agree
- 3. Somewhat disagree
- 4. Strongly disagree

Sean

33 years old, living with narcolepsy with cataplexy

Wake-Promoting Neuronal Systems in the Brain

Wakefulness Is Promoted by Multiple Wake-Promoting Neuronal Systems

- Wakefulness is promoted by the coordination of interconnected neuronal systems¹⁻³
- Several current therapies used to manage narcolepsy symptoms target wake-promoting neuronal systems, including neurons that produce^{3,4}:
 - Dopamine (e.g., amphetamines, modafinil)
 - Norepinephrine (e.g., TCAs, SNRIs)
 - Serotonin (e.g., SSRIs)
- Agents that increase dopamine in the nucleus accumbens have potential for abuse⁵

SNRI, serotonin norepinephrine reuptake inhibitor; SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant. Adapted with permission from Saper CB et al. *Nature*. 2005;437(7063):1257-1263.

Scammell TE et al. Neuron. 2017;93(4):747-765.
 Saper CB et al. Nature.
 Saper CB et

Hypocretin, Histamine, and Sleep-Wake State Stability

3 Hs of Sleep-Wake State Stability

- **Hypothalamus**: A critical "control center" in the brain for sleep-wake state stability¹⁻⁴
 - Contains neuronal systems that help maintain stable wakefulness, including:
 - Hypocretin neurons^{2,5}
 - Histamine neurons^{2,6-9}

^{1.} Shan L et al. Nat Rev Neurol. 2015;11(7):401-413. 2. Scammell TE et al. Neuron. 2017;93(4):747-795. 3. van der Heide A, Lammers GJ. Narcolepsy. In: Thorpy MJ, Billiard M, eds. Sleepiness: Causes, Consequences and Treatment. Cambridge, UK: Cambridge University Press; 2011:111-125. 4. Saper CB et al. Nature. 2005;437(7063):1257-1263. 5. España RA, Scammell TE. Sleep. 2011;34(7):845-858. 6. Haas HL et al. Physiol Rev. 2008;88(3):1183-1241.

7. Scammell TE et al. Sleep. 2019;42(1):doi: 10.1093/sleep/zsy183. 8. Williams RH et al. J Neurosci. 2014;34(17):6023-6029. 9. Crochet S et al. Eur J Neurosci. 2006;24:1404-1412.

Hypocretin Neurons Promote Stable Wakefulness

Activates

Inhibits

- During wakefulness, hypocretin neurons:
 - Activate cortical and subcortical neurons^{1,2}
 - Activate histamine and wake-promoting neurons outside of the hypothalamus^{1,2}
 - Inhibit REM sleep-promoting neurons^{1,2}
 - Inhibit non-REM sleep-promoting neurons^{1,2}

Based on animal and human studies.

^{1.} España RA, Scammell TE. Sleep. 2011;34(7):845-858. 2. Scammell T et al. Neuron. 2017;93(4):747-765.

^{3.} Haas HL et al. Physiol Rev. 2008;88(3):1183-1241. 4. Crochet S et al. Eur J Neurosci. 2006;24(5):1404-1412.

^{5.} Williams RH et al. J Neurosci. 2014;34(17):6023-6029.

Loss of Hypocretin Neurons Leads to Sleep-Wake State Instability

KNOW narcolepsy®

- Lack of hypocretin leads to:
 - Insufficient activation of histamine and wake-promoting neurons outside of the hypothalamus¹
 - Insufficient inhibition of REM sleep-promoting neurons and non-REM sleep-promoting neurons²⁻⁴
- This process causes sleep-wake state instability³

Activates

Inhibits

Based on animal and human studies.

^{1.} Scammell TE. N Engl J Med. 2015;373(27):2654-2662. 2. Pillen S et al. Curr Treat Options Neurol. 2017;19(6):23

^{3.} España RA, Scammell TE. Sleep. 2011;34(7):845-858. 4. Saper CB et al. Nature. 2005;437(7063 5. Scammell TE et al. Neuron. 2017;93(4):747-765.

^{6.} Haas HL et al. Physiol Rev. 2008;88(3):1183-1241. 7. Crochet S et al. Eur J Neurosci. 2006;24(5):1404-1412. 8. Williams RH et al. J Neurosci. 2014;34(17):6023-6029.

The Role of Histamine in Promoting and Stabilizing Wakefulness

Question for the Audience

Regarding the role of histamine in sleep and wakefulness, which of the following are you familiar with? (Select all that apply.)

- 1. Activation of cortical neurons
- 2. Activation of wake-promoting neurons
- 3. Inhibition of non-REM sleep—promoting neurons
- 4. Inhibition of REM sleep–promoting neurons
- 5. None of the above

Overview of Histamine in the Brain

- The tuberomammillary nucleus (TMN) is the only neuronal source of histamine in the brain^{1,2}
- Histamine neurons help promote wakefulness¹ by:
 - Activating the cortex and select wake-promoting neuronal systems outside of the hypothalamus²
- Histamine neurons help *stabilize* wakefulness^{1,3} by:
 - Inhibiting REM sleep-promoting neurons^{2,4,5}
 - Inhibiting non-REM sleep—promoting neurons⁶

Based on in vitro and in vivo animal studies.

^{1.} España RA, Scammell TE. Sleep. 2011;34(7):845-858. 2. Haas HL et al. Physiol Rev. 2008;88(3):1183-1241.

^{3.} Parmentier R et al. *J Neurosci.* 2002;22(17):7695-7711. **4.** Scammell TE et al. *Neuron.* 2017;93(4):747-765.

^{5.} Crochet S et al. Eur J Neurosci. 2006;24:1404-1412. 6. Williams RH et al. J Neurosci. 2014;34(17):6023-6029

A Closer Look at Histamine and Sleep-Wake State Stability

Video available at **KnowNarcolepsy.com/hcp**

Histamine Neurons Promote Wakefulness

Promote Wakefulness

Histamine Neurons Enhance Cortical Activity

- Histamine neurons directly activate cortical neurons^{1,2}
 - Important for wakefulness and cognitive functions including attention^{3,4}
- In mice lacking histamine, cortical EEG during wakefulness showed changes consistent with reduced capacity for attention³
- Histamine may be important for initiating wakefulness^{3,5}
 - Histamine-deficient mice have notably impaired wakefulness at the start of their active period^{3,5}

Hypothalamus

EEG, electroencephalography.

Based on in vitro and in vivo animal studies.

^{1.} Scammell TE et al. Neuron. 2017;93(4):747-765. 2. Haas HL et al. Physiol Rev. 2008;88(3):1183-1241.

^{3.} Parmentier R et al. J Neurosci. 2002;22(17):7695-7711. 4. Brown RE et al. Physiol Rev. 2012;92(3):1087-1187.

^{5.} España RA, Scammell TE. Sleep. 2011;34(7):845-858.

Promote Wakefulness

Histamine Neurons Activate Wake-Promoting Neurons

- Histamine activates select wake-promoting neuronal systems outside of the hypothalamus, 1-3 including:
 - Norepinephrine^{1,2}
 - Helps promote wakefulness and suppress REM sleep and non-REM sleep⁴
 - Acetylcholine¹
 - Helps promote wakefulness and suppress non-REM sleep^{4,5}
 - Serotonin¹
 - Helps suppress REM sleep and non-REM sleep⁴
 - Dopamine³
 - Helps promote wakefulness⁴

1. Haas HL et al. Physiol Rev. 2008;88(3):1183-1241. 2. Korotkova TM et al. Neuropharmacology. 2005;49(1):129-134.

Based on in vitro and in vivo animal studies.

^{3.} Torrealba F et al. Front Syst Neurosci. 2012;6:51. 4. Scammell TE et al. Neuron. 2017;93(4):747-765.

^{5.} Saper CB, et al. Neuron. 2010;68(6):1023-1042

Histamine Neurons Stabilize Wakefulness

Stabilize Wakefulness

Histamine Neurons Inhibit Non-REM Sleep—Promoting Neurons

- Histamine inhibits VLPO neuronal activity in vitro¹
 - This activity is counteracted by a histamine H₁ antagonist
- Following inhibition of histamine neurons during wakefulness, mice rapidly enter non-REM sleep^{2,3}

VLPO, ventrolateral preoptic nucleus.

Activates

Inhibits

Based on in vitro and in vivo animal studies.

^{1.} Williams RH et al. J Neurosci. 2014; 34(17):6023-6029. 2. Fujita A et al. J Neurosci. 2017;37(39):9574-9592.

^{3.} Brown RE et al. Physiol Rev. 2012;92(3):1087-1187.

Stabilize Wakefulness

Histamine Neurons Inhibit REM Sleep-Promoting Neurons

Activates

Inhibits

- Histamine activates wake-promoting neurons that inhibit REM sleep^{1,2}:
 - Norepinephrine neurons
 - Serotonin neurons
- Infusion of histamine into the vIPAG significantly suppressed REM sleep in cats³

vIPAG, ventrolateral periaqueductal gray

Based on in vitro and in vivo animal studies.

^{1.} Scammell TE et al. Neuron. 2017;93(4):747-765. 2. Haas HL et al. Physiol Rev. 2008;88(3):1183-1241.

^{3.} Crochet S et al. Eur J Neurosci. 2006;24:1404-1412.

Histamine Is Important for Sustaining Wakefulness

- Mice with disrupted hypocretin signaling have poor maintenance of wakefulness
 - Restoring hypocretin signaling through TMN neurons significantly increases long bouts of wakefulness in these mice

Hypocretin Signaling Through Histamine Neurons Improves Fragmented Wakefulness in Mice

Disruption of hypocretin receptor type 2 (HCRTR2) signaling was achieved a loxP-flanked transcription disrupter (TD) gene cassette that prevents expression of functional HCRTR2. Local expression of HCRTR2 was induced by microinjection of an adeno-associated viral vector (AAV) coding for Cre recombinase. Wakefulness was scored in 10 s epochs and bouts were characterized during the animals' normal active period (7:00 PM to 7:00 AM).

Mochizuki T et al. Proc Natl Acad Sci. 2011;108(11):4471-4476.

Histamine Neurons Stabilize Sleep-Wake Transitions

- Mice lacking histamine have more frequent transitions between sleep-wake states
 - Significantly shorter episodes of wakefulness and non-REM sleep
 - Significantly more bouts of wakefulness, REM sleep, and non-REM sleep

Hypnograms of Histamine-Deficient Mice vs Controls

Adapted with permission from Parmentier R et al. J Neurosci. 2002;22(17):7695-7711.

Parmentier R et al. J Neurosci. 2002;22(17):7695-7711.

Typical hypnograms of histamine-deficient mice versus wild-type (control) mice (15 pairs). Histamine-deficient knock-out mice lack histidine decarboxylase (HDC), the sole enzyme responsible for histamine synthesis.

Question for the Audience

On a scale of 1 to 5, how important is the role of histamine in promoting and stabilizing wakefulness?

- 1. Not at all important
- 2. A little important
- 3. Somewhat important
- 4. Very important
- 5. Extremely important

Rethinking Narcolepsy Can Help Improve Patient Care

Hear how
patients prepare
for appointments
and communicate
with their healthcare
providers

Summary

- Sleep-wake state instability manifests as signs and symptoms of narcolepsy¹⁻³
- Symptoms of narcolepsy are not always obvious^{4,5}
- Neurons in the hypothalamus help stabilize sleep-wake states^{1,6-8}
- Like hypocretin, histamine plays an important role in wakefulness^{1,7-9}

^{1.} España RA, Scammell TE. Sleep. 2011;34(7):845-858. 2. Bassetti C, Aldrich MS. In: Culebras A, ed. Sleep Disorders and Neurological Disease. New York, NY: Marcel Dekker; 2000:323-354. 3. Waihrich ES et al. Arq Neuropsiquiatr. 2006;64(4):958-962. 4. Thorpy M, Morse AM. Sleep Med Clin. 2017;12(1):61-71. 5. Overeem S et al. Sleep Med Clin. 2012;7(2012):263-281. 6. Scammell TE et al. Neuron. 2017;93(4):747-765. 7. Haas HL et al. Physiol Rev. 2008;88(3):1183-1241. 8. Scammell TE et al. Sleep. 2019;42(1): doi: 10.1093/sleep/zsy183. 9. Schwartz MD, Kilduf TS. Psychiatr Clin North Am. 2015;38(4):615-644.

Discussion

Discover more about unrecognized manifestations of sleep-wake state instability and sign up for updates

Learn more at KnowNarcolepsy.com/hcp

Know Narcolepsy is a registered trademark of Harmony Biosciences, LLC. REM at the Wrong Time and Non-REM at the Wrong Time are trademarks of Harmony Biosciences, LLC.